Battery management 101

/ Tag:Battery management 101

VRLA Installation and Commissioning

This is the eighth in a series of units that will educate you on the part played by a battery in an uninterruptible power supply (UPS) system. IEEE Standard 1187 establishes the recommended practices for the design and installation of valve-regulated lead-acid (VRLA) batteries.  The purpose of this paper is to highlight the most significant considerations identified in that standard, including: Safety considerations Design consideration Receiving and installation procedures IEEE 1188, which was discussed in Unit 8, describes the procedures for acceptance (commissioning) tests, including Pretest requirements Test procedures Corrective actions In general, work on batteries should only be performed by knowledgeable personnel who have proper training/certification, proper tools, and personal protective equipment (PPE).  IEEE Standard 1657 establishes minimum curriculum for battery technician certification.  Prior to any task involving contact with a battery, a job hazard analysis should be conducted to identify any potential hazards that might be encountered. Safety considerations HAZARD NOTIFICATION -  Proactive notification of an impending failure is far better than reactive alarms after a failure has occurred.  Continuous (real-time) monitoring is an indispensable tool that, when properly used, can detect and predict failures before they turn into fires, melt-down, arc flash, or other catastrophic failures.  Battery monitoring should always be installed by certified technicians, preferably prior to commissioning. SHOCK HAZARD -  Because most UPS system batteries are rated for greater than 50 Vdc, electrically-rated and/or insulated gloves should be worn.  Energized parts, such as terminal posts and intercell connections, should be insulated or shielded; shields should be removable when a section of the battery is being serviced. GROUND FAULT DETECTION -  GFD is recommended (or may be required by code) for most battery systems, depending upon the grounding method used.  Refer to local codes or IEEE 1187 for guidelines.  The UPS design will usually dictate the [...]

By | November 6th, 2018|News, Technical series|0 Comments

Battery Cabinets vs. Battery Racks

This is the seventh in a series of units that will educate you on the part played by a battery in an uninterruptible power supply (UPS) system. Early on in a UPS design a decision must be made on whether batteries should be installed on racks or in cabinets.  Both have pros and cons.  The following are typical design considerations. Battery technology Vented lead-acid (VLA) (frequently referred to as “flooded” or “wet cell”) batteries, which are sometimes used on very large UPS systems, are ALWAYS rack-mounted. Valve-regulated lead-acid (VRLA) batteries can be mounted on racks or in cabinets.  The remainder of this paper will address considerations for VRLA placement. Size Generally speaking, the larger the battery (both physically and ampere-hour rated), the more likely a rack configuration will be considered.  There are no hard and fast rules, but typically once a battery unit (single-cell or multi-cell) gets above 100 AH, it favors rack-mount.  Below that, cabinet mounting should be considered. Number “Number” refers both to the number of cells in a string, and the number of strings.  UPS systems frequently operate at high dc voltages (e.g., 250 to 800 Volts).  An analysis must be made on whether to have a minimum number of battery strings using physically large units, or to have multiple strings of physically smaller units.  Such decision is outside the scope of this paper, but it would include analysis of reliability (e.g., where and how many could the single-point failures be?) and maintainability (e.g., when is a unit too large for a person to handle, thereby requiring special handling equipment?).   Every cell-to-cell connection is a potential single point of failure.  Redundancy can increase or decrease reliability, depending upon the number of failure points.  Anything over about 23 kilograms (50 pounds) is probably too heavy to lift safely.  [...]

By | August 27th, 2018|News, Technical series|0 Comments

Battery Environmental and safety considerations

This blog, discussing battery Environmental and safety considerations, is the fifth in a series of units that will educate the reader on the part played by a battery in an uninterruptible power system (UPS). Environmental considerations fall into two categories: -  the effects upon the battery by the environment in which it sits (small “e”); and -  the effects of the battery upon the Environment in which it was produced, used, and disposed (big “E”) Impact of the environment on batteries Earlier units have discussed the impact of such things as temperature and grid reliability upon the life of a battery system.  We will simply state here that it is wise to follow the manufacturer’s recommendations.  A lead-acid battery, and in particular a VRLA battery, needs: well ventilated and temperature-controlled air flow. Cells that are packed tightly against each other will not be able to dissipate heat.  The result is that cells in the middle of a row will run hotter – and therefore die sooner – than cells at the end of a row.  Likewise, cells on the bottom shelf or tier will be cooler – and therefore live longer – than cells at the top of a cabinet or rack.  Hot cells are more likely to vent gas, which then must be ventilated to prevent accumulation to hazardous levels. clean air. Dirt and humidity can have a corrosive effect on the battery, and can even be conductive, creating short circuits.  Batteries should be inspected and cleaned periodically. chemical free maintenance. No chemical should ever be used to clean a battery unless it has been approved and/or recommended by the manufacturer.  Some chemicals can deteriorate the cell container, causing leaks. sunshine-free location. UPS batteries should never be installed outdoors where they can be exposed to the damaging effects of [...]

By | May 4th, 2018|Blog, Technical series|1 Comment

Failure modes in lead-acid batteries

Despite a century of experience, collective knowledge, and wide-spread preference for lead-acid batteries, they are not without some short-comings.  An earlier unit mentioned a couple of issues.  In this unit we go into more depth about how, when and why a lead-acid battery might be made to fail prematurely.  Most conditions are preventable with proper monitoring and maintenance.  This list is not all inclusive, but some of the main considerations are...

By | March 2nd, 2018|Blog, Technical series|0 Comments

Battery charging regimes

This is the third in a series of units that will educate the reader on the part played by a battery in an uninterruptible power supply (UPS) system. In a previous unit we discussed various stationary lead-acid battery chemistries for UPS applications.  In this unit we look at the role of battery charger subsystem.  Charging regimes can generally be categorized into two types:  intermittent and float

By | January 31st, 2018|Blog, Technical series|0 Comments

Battery configurations in data centers

This is the second in a series of units that will educate the reader on the part played by a battery in an uninterruptible power system (UPS). In our introductory unit we pointed out that lead-acid batteries are the preferred method of energy storage for UPS systems in about 95% of all data center applications.  We also stated that lead-acid batteries can be split into two main categories or technology types:  valve-regulated or vented.

By | November 13th, 2017|Blog, Technical series|0 Comments

All things big and small

This is the first in a series of units that will educate the reader on the part played by a battery in an uninterruptible power system (UPS). Of the three main subsystems, the battery is what makes the system “uninterruptible”. Depending upon the system design, the battery can constitute as much as 50% of the cost of the UPS. Without a reliable battery, the operation of the entire data center can be put at risk. Power interruptions are rare and unpredictable, but when they occur they can disrupt the entire business or operation. Costs of downtime can range from hundreds to millions of dollars, depending upon the mission of the data center.

By | October 27th, 2017|Blog, Technical series|0 Comments
Load More Posts